Source code for py3dtiles.points.task.xyz_reader
import math
from pathlib import Path
import pickle
import struct
import numpy as np
from py3dtiles.points.utils import ResponseType
[docs]
def get_metadata(path: Path, color_scale=None, fraction: int =100) -> dict:
aabb = None
count = 0
seek_values = []
with path.open() as f:
while True:
batch = 10_000
points = np.zeros((batch, 3))
offset = f.tell()
for i in range(batch):
line = f.readline()
if not line:
points = np.resize(points, (i, 3))
break
points[i] = [float(s) for s in line.split(" ")][:3]
if points.shape[0] == 0:
break
if not count % 1_000_000:
seek_values += [offset]
count += points.shape[0]
batch_aabb = np.array([
np.min(points, axis=0), np.max(points, axis=0)
])
# Update aabb
if aabb is None:
aabb = batch_aabb
else:
aabb[0] = np.minimum(aabb[0], batch_aabb[0])
aabb[1] = np.maximum(aabb[1], batch_aabb[1])
# We need an exact point count
point_count = count * fraction / 100
_1M = min(count, 1_000_000)
steps = math.ceil(count / _1M)
if steps != len(seek_values):
raise ValueError("the size of seek_values should be equal to steps,"
f"currently steps = {steps} and len(seek_values) = {len(seek_values)}")
portions = [
(i * _1M, min(count, (i + 1) * _1M), seek_values[i]) for i in range(steps)
]
pointcloud_file_portions = [
(str(path), p) for p in portions
]
return {
"portions": pointcloud_file_portions,
"aabb": aabb,
"color_scale": color_scale,
"srs_in": None,
"point_count": point_count,
"avg_min": aabb[0],
}
[docs]
def run(filename: str, offset_scale, portion, queue, transformer):
"""
Reads points from a xyz file
Consider XYZIRGB format following FME documentation(*). If the number of
features does not correspond (i.e. does not equal to 7), we do the
following hypothesis:
- 3 features mean XYZ
- 4 features mean XYZI
- 6 features mean XYZRGB
(*) See: https://docs.safe.com/fme/html/FME_Desktop_Documentation/FME_ReadersWriters/pointcloudxyz/pointcloudxyz.htm
"""
try:
with open(filename) as f:
point_count = portion[1] - portion[0]
step = min(point_count, max((point_count) // 10, 100000))
f.seek(portion[2])
feature_nb = 7
for _ in range(0, point_count, step):
points = np.zeros((step, feature_nb), dtype=np.float32)
for j in range(0, step):
line = f.readline()
if not line:
points = np.resize(points, (j, feature_nb))
break
line_features = [float(s) for s in line.split(" ")]
if len(line_features) == 3:
line_features += [None] * 4 # Insert intensity and RGB
elif len(line_features) == 4:
line_features += [None] * 3 # Insert RGB
elif len(line_features) == 6:
line_features.insert(3, None) # Insert intensity
points[j] = line_features
x, y, z = (points[:, c] for c in [0, 1, 2])
if transformer:
x, y, z = transformer.transform(x, y, z)
x = (x + offset_scale[0][0]) * offset_scale[1][0]
y = (y + offset_scale[0][1]) * offset_scale[1][1]
z = (z + offset_scale[0][2]) * offset_scale[1][2]
coords = np.vstack((x, y, z)).transpose()
if offset_scale[2] is not None:
# Apply transformation matrix (because the tile's transform will contain
# the inverse of this matrix)
coords = np.dot(coords, offset_scale[2])
coords = np.ascontiguousarray(coords.astype(np.float32))
# Read colors: 3 last columns of the point cloud
colors = points[:, -3:].astype(np.uint8)
queue.send_multipart(
[
ResponseType.NEW_TASK.value,
b"",
pickle.dumps({"xyz": coords, "rgb": colors}),
struct.pack(">I", len(coords)),
],
copy=False,
)
queue.send_multipart([ResponseType.READ.value])
except Exception as e:
print(f"Exception while reading points from xyz file {filename}")
raise e