import csv
import math
from pathlib import Path
from typing import Generator, List, Optional, Tuple
import numpy as np
import numpy.typing as npt
from pyproj import Transformer
from py3dtiles.typing import MetadataReaderType, OffsetScaleType, PortionItemType
[docs]
def run(
filename: str,
offset_scale: OffsetScaleType,
portion: PortionItemType,
transformer: Optional[Transformer],
color_scale: Optional[float],
) -> Generator[
Tuple[npt.NDArray[np.float32], npt.NDArray[np.uint8], npt.NDArray[np.uint8]],
None,
None,
]:
"""
Reads points from a .xyz or .csv file
Consider XYZIRGB format following FME documentation(*). We do the
following hypothesis and enhancements:
- A header line defining columns in CSV style may be present, but will be ignored.
- The separator separating the columns is automagically guessed by the
reader. This is generally fail safe. It will not harm to use commonly
accepted separators like space, tab, colon, semi-colon.
- The order of columns is fixed. The reader does the following assumptions:
- 3 columns mean XYZ
- 4 columns mean XYZI
- 6 columns mean XYZRGB
- 7 columns mean XYZIRGB
- 8 columns mean XYZIRGB followed by classification data.
Classification data must be integers only.
- all columns after the 8th column will be ignored.
NOTE: we assume RGBÂ are 8 bits components.
(*) See: https://docs.safe.com/fme/html/FME_Desktop_Documentation/FME_ReadersWriters/pointcloudxyz/pointcloudxyz.htm
"""
with open(filename) as f:
dialect = csv.Sniffer().sniff(f.read(2048))
f.seek(0)
f.readline() # skip first line in case there is a header we promised to ignore
feature_nb = len(f.readline().split(dialect.delimiter))
if feature_nb < 8:
feature_nb = 7 # we pad to 7 columns with 0
if feature_nb > 8:
feature_nb = 8 # We ignore other data as downstream only 1 value for classification data is supported.
# Once downstream supports multiple classification values this reader will as well
# when this line is removed.
point_count = portion[1] - portion[0]
step = min(point_count, max((point_count) // 10, 100000))
f.seek(portion[2])
for _ in range(0, point_count, step):
points = np.zeros((step, feature_nb), dtype=np.float32)
for j in range(step):
line = f.readline()
if not line:
points = np.resize(points, (j, feature_nb))
break
line_features: List[Optional[float]] = [
float(s) for s in line.split(dialect.delimiter)[:feature_nb]
]
if len(line_features) == 3:
line_features += [None] * 4 # Insert intensity and RGB
elif len(line_features) == 4:
line_features += [None] * 3 # Insert RGB
elif len(line_features) == 6:
line_features.insert(3, None) # Insert intensity
points[j] = line_features
x, y, z = (points[:, c] for c in [0, 1, 2])
if transformer:
x, y, z = transformer.transform(x, y, z)
x = (x + offset_scale[0][0]) * offset_scale[1][0]
y = (y + offset_scale[0][1]) * offset_scale[1][1]
z = (z + offset_scale[0][2]) * offset_scale[1][2]
coords = np.vstack((x, y, z)).transpose()
if offset_scale[2] is not None:
# Apply transformation matrix (because the tile's transform will contain
# the inverse of this matrix)
coords = np.dot(coords, offset_scale[2])
coords = np.ascontiguousarray(coords.astype(np.float32))
# Read colors: 3 last columns when excluding classification data
if color_scale is None:
colors = points[:, 4:7].astype(np.uint8)
else:
colors = np.clip(points[:, 4:7] * color_scale, 0, 255).astype(np.uint8)
if feature_nb > 7: # we have classification data
classification = np.array(points[:, 7:], dtype=np.uint8).reshape(-1, 1)
else:
classification = np.zeros((points.shape[0], 1), dtype=np.uint8)
yield coords, colors, classification