Source code for py3dtiles.tileset.bounding_volume_box

from __future__ import annotations

import copy
from collections.abc import Sequence
from typing import TYPE_CHECKING, Any

import numpy as np
import numpy.typing as npt

from py3dtiles.typing import BoundingVolumeBoxDictType

from .bounding_volume import BoundingVolume

if TYPE_CHECKING:
    from typing_extensions import Self


[docs] class BoundingVolumeBox(BoundingVolume[BoundingVolumeBoxDictType]): """ A box bounding volume as defined in the 3DTiles specifications i.e. an array of 12 numbers that define an oriented bounding box: - The first three elements define the x, y, and z values for the center of the box. - The next three elements (with indices 3, 4, and 5) define the x axis direction and half-length. - The next three elements (with indices 6, 7, and 8) define the y axis direction and half-length. - The last three elements (indices 9, 10, and 11) define the z axis direction and half-length. Note that, by default, a box bounding volume doesn't need to be aligned with the coordinate axis. Still in general, computing the box bounding volume of two box bounding volumes won't necessarily yield a box that is aligned with the coordinate axis (although this computation might require some fitting algorithm e.g. the principal component analysis method. Yet in sake of simplification (and numerical efficiency), when asked to "add" (i.e. to find the enclosing box of) two (or more) box bounding volumes this class resolves to compute the "canonical" fitting/enclosing box i.e. a box that is parallel to the coordinate axis. """ def __init__(self) -> None: super().__init__() self._box: npt.NDArray[np.float64] | None = None
[docs] @classmethod def union(cls, bbox1: BoundingVolumeBox, bbox2: BoundingVolumeBox) -> Self: """ Create a box containing the 2 box parameters. """ bounding_volume_box = cls() bounding_volume_box.add(bbox1) bounding_volume_box.add(bbox2) return bounding_volume_box
[docs] @classmethod def from_dict(cls, bounding_volume_box_dict: BoundingVolumeBoxDictType) -> Self: """ Construct a BoundingVolumeBox from a dict following the structure of a 3dtiles bounding volume """ bounding_volume_box = cls() bounding_volume_box.set_from_list(bounding_volume_box_dict["box"]) bounding_volume_box.set_properties_from_dict(bounding_volume_box_dict) return bounding_volume_box
[docs] @classmethod def from_points( cls, points: Sequence[npt.NDArray[np.float64] | list[float]] ) -> BoundingVolumeBox: """ Construct a bounding box enclosing all the points. Internally call `set_from_points`. :return: a new instance of BoundingVolumeBox """ result = cls() result.set_from_points(points) return result
[docs] @classmethod def from_list(cls, box_list: npt.ArrayLike) -> BoundingVolumeBox: """ Construct a bounding box enclosing all the points. Internally call `set_from_points`. :return: a new instance of BoundingVolumeBox """ result = cls() result.set_from_list(box_list) return result
[docs] @classmethod def from_mins_maxs(cls, mins_maxs: npt.NDArray[np.float64]) -> BoundingVolumeBox: """ Build a box from a min and a max. Internally call `set_from_mins_maxs`. :param mins_maxs: the array [x_min, y_min, z_min, x_max, y_max, z_max] that is the boundaries of the box along each coordinate axis :return: a new instance of BoundingVolumeBox """ result = cls() result.set_from_mins_maxs(mins_maxs) return result
[docs] def is_valid(self) -> bool: return BoundingVolumeBox._is_box3_valid(self._box)[0]
[docs] def get_center(self) -> npt.NDArray[np.float64]: if self._box is None: raise AttributeError("Bounding Volume Box is not defined.") return self._box[0:3]
[docs] def get_half_size(self) -> npt.NDArray[np.float64]: if self._box is None: raise AttributeError("Bounding Volume Box is not defined.") return np.array( [ np.linalg.norm(self._box[3:6]), np.linalg.norm(self._box[6:9]), np.linalg.norm(self._box[9:12]), ] )
[docs] def translate(self, offset: npt.NDArray[np.float64]) -> None: if self._box is None: raise AttributeError("Bounding Volume Box is not defined.") self._box[:3] += offset[:3]
[docs] def transform(self, transform: npt.NDArray[np.float64]) -> None: if self._box is None: raise AttributeError("Bounding Volume Box is not defined.") assert transform.shape == (4, 4) # FIXME: the following code only uses the first three coordinates # of the transformation matrix (and basically ignores the fourth # column of transform). This looks like some kind of mistake... rotation = np.array([transform[0][0:3], transform[1][0:3], transform[2][0:3]]) center = self._box[0:3] x_half_axis = self._box[3:6] y_half_axis = self._box[6:9] z_half_axis = self._box[9:12] # Apply the rotation part to each element new_center = rotation.dot(center) new_x_half_axis = rotation.dot(x_half_axis) new_y_half_axis = rotation.dot(y_half_axis) new_z_half_axis = rotation.dot(z_half_axis) self._box = np.concatenate( (new_center, new_x_half_axis, new_y_half_axis, new_z_half_axis) ) offset = transform[:, 3][0:3] self.translate(offset)
[docs] def set_from_list(self, box_list: npt.ArrayLike) -> None: """ Set the box from a list of coordinates closely matching the 3Dtiles spec. :param box_list: An array of 12 numbers that define an oriented bounding box. The first three elements define the x, y, and z values for the center of the box. The next three elements (with indices 3, 4, and 5) define the x axis direction and half-length. The next three elements (indices 6, 7, and 8) define the y axis direction and half-length. The last three elements (indices 9, 10, and 11) define the z axis direction and half-length. """ box = np.array(box_list, dtype=np.float64) valid, reason = BoundingVolumeBox._is_box3_valid(box) if not valid: raise ValueError(reason) self._box = box
[docs] def set_from_points( self, points: Sequence[npt.NDArray[np.float64] | list[float]] ) -> None: """ Make the current box only include a list of points. Note: the box limits are replaced, not extended. :param points: An array of points """ self._box = BoundingVolumeBox.get_box_array_from_point(points)
[docs] def set_from_mins_maxs(self, mins_maxs: npt.NDArray[np.float64]) -> None: """ Set the box from a min and a max. :param mins_maxs: the array [x_min, y_min, z_min, x_max, y_max, z_max] that is the boundaries of the box along each coordinate axis """ self._box = BoundingVolumeBox.get_box_array_from_mins_maxs(mins_maxs)
[docs] def get_corners(self) -> list[npt.NDArray[np.float64]]: """ :return: the corners (3D points) of the box as a list """ if self._box is None: raise AttributeError("Bounding Volume Box is not defined.") center, x_half_axis, y_half_axis, z_half_axis = self._box.reshape([-1, 3]) x_axis = x_half_axis * 2 y_axis = y_half_axis * 2 z_axis = z_half_axis * 2 # The eight cornering points of the box origin = center - x_half_axis - y_half_axis - z_half_axis ox = origin + x_axis oy = origin + y_axis oz = origin + z_axis oxy = ox + y_axis oxz = ox + z_axis oyz = oy + z_axis oxyz = oxy + z_axis return [origin, ox, oy, oxy, oz, oxz, oyz, oxyz]
[docs] def get_canonical_as_array(self) -> npt.NDArray[np.float64]: """ :return: the smallest enclosing box (as an array) that is parallel to the coordinate axis """ return BoundingVolumeBox.get_box_array_from_point(self.get_corners())
[docs] def add(self, other: BoundingVolume[Any]) -> None: if not isinstance(other, BoundingVolumeBox): raise NotImplementedError( "The add method works only with BoundingVolumeBox" ) if self._box is None: # Then it is safe to overwrite self._box = copy.deepcopy(other._box) return corners = self.get_corners() + other.get_corners() self.set_from_points(corners)
[docs] def to_dict(self) -> BoundingVolumeBoxDictType: if self._box is None: raise AttributeError("Bounding Volume Box is not defined.") dict_data: BoundingVolumeBoxDictType = {"box": list(self._box)} return self.add_root_properties_to_dict(dict_data)
[docs] @staticmethod def get_box_array_from_mins_maxs( mins_maxs: npt.NDArray[np.float64] | list[float], ) -> npt.NDArray[np.float64]: """ :param mins_maxs: the list [x_min, y_min, z_min, x_max, y_max, z_max] that is the boundaries of the box along each coordinate axis :return: the smallest box (as an array, as opposed to a BoundingVolumeBox instance) that encloses the given list of (3D) points and that is parallel to the coordinate axis. """ x_min = mins_maxs[0] x_max = mins_maxs[3] y_min = mins_maxs[1] y_max = mins_maxs[4] z_min = mins_maxs[2] z_max = mins_maxs[5] new_center = np.array( [(x_min + x_max) / 2, (y_min + y_max) / 2, (z_min + z_max) / 2] ) new_x_half_axis = np.array([(x_max - x_min) / 2, 0, 0]) new_y_half_axis = np.array([0, (y_max - y_min) / 2, 0]) new_z_half_axis = np.array([0, 0, (z_max - z_min) / 2]) return np.concatenate( (new_center, new_x_half_axis, new_y_half_axis, new_z_half_axis) )
[docs] @staticmethod def get_box_array_from_point( points: Sequence[npt.NDArray[np.float64] | list[float]], ) -> npt.NDArray[np.float64]: """ :param points: a list of 3D points :return: the smallest box (as an array, as opposed to a BoundingVolumeBox instance) that encloses the given list of (3D) points and that is parallel to the coordinate axis. """ return BoundingVolumeBox.get_box_array_from_mins_maxs( np.array( [ min(c[0] for c in points), min(c[1] for c in points), min(c[2] for c in points), max(c[0] for c in points), max(c[1] for c in points), max(c[2] for c in points), ] ) )
@staticmethod def _is_box3_valid(box: npt.NDArray[np.float64] | None) -> tuple[bool, str]: if box is None: return False, "Bounding Volume Box is not defined." if box.ndim != 1: return False, "Bounding Volume Box has wrong dimensions." if box.shape[0] != 12: return False, "Warning: Bounding Volume Box must have 12 elements." return True, ""